

Seminar Agenda

- Welcome and Introduction
- Operations Modeling Basics
- Operations Model Applications
- Q&A (Panel Discussion)
- Lunch
- Operations Modeling Tools
- Next Steps

CALSIM II – Erik Reyes

HYDROPS – Tung Van Do

WQRSS – Carl Chen

HEC-RAS – Eric Clyde

Local Operations Model for Oroville-Thermalito Complex

Tung Van Do (Powel Group, Inc.)

June 24, 2003

- Why Local Operations Model?
- LOM's Basic Characteristics
- How does an optimization model work?
- Oroville-Thermalito schematic
- LOM's Inputs
- LOM's Outputs
- LOM's Features
- Sample Screens

Why Local Operations Model?

- CalSim II provides a bigger picture at monthly time steps
- LOM provides detailed analysis on hourly varying parameters

 LOM provides optimal hourly operation results for other analyses

LOM (HYDROPS) Characteristics

- CALSIM II outputs are used for boundary conditions and targets
- Deterministic optimization model
- Basic parameters: flow, level, and generation
- Hourly time steps for weekly time horizon
- HYDROPS: a proprietary model

How does an optimization model work?

- Objective: maximize or minimize something
- Constraints: X + 2Y < a, Y > b, etc.
- Starting and ending conditions
- Optimization techniques (LP, DP, etc.)

Oroville-Thermalito Schematic

LOM's Inputs

Physical characteristics and limitations:

- Reservoir, Power plant, Spillway, Canal, Turbines, etc.

• From CalSim II and others:

- Inflow, diversion, and evaporation
- Flood control curve (COE)
- Flow and level targets
- Energy price

Operating constraints:

- Operating min/max for basic parameters
- Stage and flow fluctuation and ramping
- Instream flow and licensing restrictions

Hourly results:

- Level and storage for all reservoirs
- Generating and pump-back flow for all turbines and plants
- Generation and pumping energy for all turbines and plants
- Reservoir spill, Hyatt valve and Feather River flows
- Generation and revenue for the system and for all plants

Weekly results:

- System and plant generation and revenue
- Reservoir level, river flow, plant discharge and spill

- Scenario and Version Concept
 - A version is a data set for one input data type.
 - A scenario is a collection of versioned input data of various data types and the optimized results.
 - Capability to create and save many study scenarios with minimal data entry.
- Soft and Hard Constraints
 - Hard constraints: physical limits
 - Soft constraints: desirable operating range
- Convenient User Interface

Flowchart for a Scenario Run

CALSIM II

Data disaggregation

Local
Operation
Model

- Hourly operation
- Optimal generation and pumpback

- Water supply condition
- Monthly operation and water budget

Data transfer

- Reservoir temperature
- River temperature

Temperature Model

Scenario Design Screen

Starting Date

Scenario

Oct 03, 1921

Ending Date

Oct 02, 1994

Scenario Status | Optimized short term (hourly) - Incomplete

Operating Constraints Screen

Oroville Flood Control Curve for 1922 Version Starting Date Oct 03, 1921 Ending Date Oct 02, 1994

Optimized short term (hourly) - Incomplete Scenario Status

Energy Price Screen

Starting Date

Oct 03, 1921

Ending Date

Oct 02, 1994

Scenario Status | Optimized short term (hourly) - Incomplete

DWR Test Scenario Jan 1, 97 start date

Version

Oroville Level Screen

Scenario 🕝 Test 1921-1994 Starting Date Oct 03, 1921 Ending Date Oct 02, 1994 Scenario Status Optimized short term (hourly) - Incomplete

Pump-back Flow Screen

Oct 03, 1921

Ending Date

Oct 02, 1994

Scenario Status | Optimized short term (hourly) - Incomplete

Starting Date

Test 1921-1994

Scenario

Turbine Results Screen

HYDROPS Q&A

Seminar Agenda

- Welcome and Introduction
- Operations Modeling Basics
- Operations Model Applications
- Q&A (Panel Discussion)
- Lunch
- Operations Modeling Tools
- Next Steps

CALSIM II – Erik Reyes
HYDROPS – Tung Van Do
WQRSS – Carl Chen
HEC-RAS – Eric Clyde